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Abstract
Objective.With the development in the field of neural networks, explainable AI (XAI), is being
studied to ensure that artificial intelligence models can be explained. There are some attempts to
apply neural networks to neuroscientific studies to explain neurophysiological information with
high machine learning performances. However, most of those studies have simply visualized
features extracted from XAI and seem to lack an active neuroscientific interpretation of those
features. In this study, we have tried to actively explain the high-dimensional learning features
contained in the neurophysiological information extracted from XAI, compared with the
previously reported neuroscientific results. Approach. We designed a deep neural network classifier
using 3D information (3D DNN) and a 3D class activation map (3D CAM) to visualize
high-dimensional classification features. We used those tools to classify monkey
electrocorticogram (ECoG) data obtained from the unimanual and bimanual movement
experiment.Main results. The 3D DNN showed better classification accuracy than other machine
learning techniques, such as 2D DNN. Unexpectedly, the activation weight in the 3D CAM analysis
was high in the ipsilateral motor and somatosensory cortex regions, whereas the gamma-band
power was activated in the contralateral areas during unimanual movement, which suggests that
the brain signal acquired from the motor cortex contains information about both contralateral
movement and ipsilateral movement. Moreover, the hand-movement classification system used
critical temporal information at movement onset and offset when classifying bimanual
movements. Significance. As far as we know, this is the first study to use high-dimensional
neurophysiological information (spatial, spectral, and temporal) with the deep learning method,
reconstruct those features, and explain how the neural network works. We expect that our methods
can be widely applied and used in neuroscience and electrophysiology research from the point of
view of the explainability of XAI as well as its performance.

1. Introduction

With the remarkable growth in the field of neural
networks, deep neural network (DNN) research has
produced an improved performance in fields such
as image, speech, and text classification [1, 2]. As
the performance of DNNs improves, understanding

how they derive their high-performance results has
become both interesting and important [3, 4]. Thus,
a field called explainable AI (XAI) has recently been
developed and studied to ensure that artificial intel-
ligence models maintain a high level of accuracy and
can be explained [3–5].When the unknown black box
in aDNNcan bemade transparent, users can trust the
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results of the model, and developers might find room
to improve the model. XAI studies have shown the
possibilities of understanding and interpreting artifi-
cial intelligence models by calculating features based
on image classification, such as deconvolution and
class activation map (CAM) [6–9]. For instance, a
CAM can show the significant features of a DNN for
classification or application in the form of heatmap
images, making it intuitive and straightforward for
users to understand [6].

Due to the high performance of DNNs, they have
been applied to large-scale measured neural data-
sets to perform prediction and classification in the
field of neuroscience [5]. For instance, some research
groups have used DNNs to classify patterns in large-
scale electroencephalography (EEG) data related to
mental workload [10–12], motor imagery [13, 14],
event-related potentials [15], emotion recognition
[16], and seizure detection [17, 18]. In addition, due
to the explainability of XAI, as well as its perform-
ance, some researchers have attempted to apply it to
neuroscientific studies to explain neurophysiological
information [19–21]. However, most of those stud-
ies have simply visualized the features extracted in the
CAM without apparently trying to actively interpret
the neuroscience involved in them. In addition, they
manipulated only one- or two-dimensional data that
are suitable for conventional speech- or image-based
deep learning [10–15, 17, 18], even though EEG data
contain high-dimensional (temporal, spectral, and
spatial) information.

In this study, we designed a DNN classifier using
3D information from a neural signal and used it
to classify monkey electrocorticogram (ECoG) data
obtained during the unimanual and bimanual arm
movement experiment.

We demonstrated that our 3D DNN model
showed better armmovement classification perform-
ance than other methods, including the 2D DNN
model. By using the 3D CAM, we figured out which
features played a crucial role in the classification, and
we interpreted the neuroscientific role of those spa-
tial, temporal, and spectral features.

2. Methods

2.1. Subjects and surgical protocol
Two healthy, adult rhesus macaquemonkeys (Macaca
mulatta, denoted asM23 andM24) participated in the
bimanual arm movement experiment, as described
in detail in our previous study [22]. To implant
the epidural ECoG electrode array (32-channel plat-
inum array, Neuronexus, USA) in the brain, a
licensed veterinarian performed the whole surgical
process with appropriate sterility, anesthesia, mon-
itoring, and recording for all measured physiolo-
gical variables. Each animal was injected intramus-
cularly (I.M.) with atropine sulfate (0.08 mg kg−1)
1 h before surgery to inhibit excessive salivation.

After 30min, the animal was sedated with tiletamine-
zolazepam (Zoletil®, 10 mg kg−1, I.M.), intubated,
and placed under isoflurane anesthesia. Heart rate,
blood pressure, body temperature, oxygen saturation,
and respiratory rate were continuously monitored
during surgery. Each monkey was fixed in a stereo-
taxic frame, and the craniotomy was conducted with
a 2.5 cm radius on both hemispheres. The dura mater
was not injured.

In each hemisphere of each monkey, the ECoG
electrodes were placed at the dorsal premotor cortex
(PMd), supplementary motor area (SMA), primary
motor cortex (M1), primary somatosensory cortex
(S1), and posterior parietal cortex (PPC), as shown
in figure 1(A). The ground electrode was placed at
the midline. After surgery, the animals were given
adequate time to recover in their cages, consistent
with the Guide for the Care the Use of Laborat-
ory Animals. The temperature of the cages was pre-
served at 24 ± 4 ◦C, and the humidity was main-
tained at 50± 10%. The light was controlled in a 12 h
light/dark cycle. The Seoul National University Hos-
pital Animal Care and Use Committee (IACUC No.
13-0314) approved all experimental procedures.

2.2. Behavior task
Before each behavior task, the animal sat on a chair,
and their headwas fixed in place with the head holder.
Then the cue buttons were set within the monkey’s
line of sight, and the ready buttons were placed in a
natural and comfortable arm position, as shown in
figure 1(B). The distance from the ready button to the
cue button was approximately 30 cm, which is almost
the maximum distance that the monkeys could reach
out their arms. The task started when the monkey
pushed the ready button which lit a green light. The
time interval from the trial start to the cue onset was
randomly set between 3 s and 7 s. Using the colored
lights on the cue buttons, each trial was distinguished
by three target movement types: left-arm movement,
right-armmovement, and both-armsmovement. The
blue light indicated that the monkey moved their left
arm, and the red light meant that the subject moved
their right arm. If the blue and red lights were presen-
ted simultaneously, the animal moved both arms.

One of the three types appeared randomly on
the cue buttons. For trials of left-arm and right-arm
movement, the monkey was to move their target arm
to push the cue button while pushing the ready but-
ton with their non-target arm (figure 1(B)). For the
trials of both-arm movement, the monkey was to
move both arms and push both cue buttons simul-
taneously (figure 1(B)). If the animal pushed and held
the target cue buttons correctly for 1 s, the trial was
finished, and the monkey received some water as a
reward. The button and reward systems were oper-
ated by MATLAB (Mathworks, USA) and NI-PCI-
6221 (National Instruments, USA).We recorded each
monkey’s epidural ECoG data and motion tracking
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Figure 1. Positions of the ECoG electrode arrays, behavior protocol, and data processing. (A) In both hemispheres, the ECoG
electrodes were inserted on the gyrus from the edge of the arcuate sulcus (AS) to the intraparietal sulcus (IP), passing the central
sulcus (CS). The electrodes were placed on the primary motor cortex (M1), supplementary motor area (SMA), dorsal premotor
cortex (PMd), primary somatosensory cortex (S1), and posterior parietal cortex (PPC). (B) Experimental protocol with three
arm-movement tasks. The monkey conducted three types of arm-movement tasks, left arm, right arm, and both arms, while the
ECoG signals were recorded. To start the behavior tasks, the monkey pressed and held the ready button, which turned on a green
light. For each task, the colored cue buttons (left arm-blue, right arm-red) lit up randomly. Each session contained 200 trials, and
each monkey completed one to four sessions per day for four months. (C) ECoG data preprocessing. For the data analysis, we
used ECoG data from−300 ms to 700 ms for each movement onset. Using the spectrotemporal analysis method for each spatial
information, we stacked the high-dimension feature data (spatial-spectral-temporal information) for each arm movement.

data for four months, one to four sessions per day,
with each session containing 200 trials.

2.3. Data acquisition and preprocessing
Three weeks after the surgery, we started to record
epidural ECoG signals while the monkeys conduc-
ted the behavior tasks. The ECoG signals were recor-
ded using an EEG 1200 (Nihon Kohden, Japan) at a
sampling frequency of 1 kHz per channel. For data
preprocessing, we used the MATLAB and EEGLAB

toolbox. The raw ECoG data were bandpass filtered
in the range of 0.3–200 Hz and then notch filtered at
60, 120, and 180 Hz to remove the power noise.

As input data, we made spectrotemporal
representation data, called event-related spectral
perturbation (ERSP) data, using the EEGLAB
‘newtimef ’ function wavelet transform, as shown
in figure 1(C), from every electrode. This high-
dimensional feature describes the spatial-spectral-
temporal information of the signals from−300 ms to
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Table 1. DenseNet structure. Modified structures for training the 2D ECoG feature map (DenseNet-2D) and the 3D ECoG feature map
(DenseNet-3D).

Layers DenseNet-161 (k= 48) DenseNet-2D (k= 48) DenseNet-3D (k= 48)

Convolution 7× 7 conv, stride (2, 2) 7× 7 conv, stride (2, 1) 7× 7× 7 conv, stride
(2, 2, 1)

Pooling 3× 3 max pool, stride
(2, 2)

3× 3 max pool, stride
(2, 1)

3× 3 max pool, stride
(2, 1, 1)

Dense block (1)

[
1× 1conv
3× 3conv

]
× 6

[
1× 1conv
3× 3conv

]
× 3

[
1× 1× 1conv
3× 3× 3conv

]
× 3

Transition layer (1) 1× 1 conv 1× 1 conv 1× 1× 1 conv
2× 2 average pool,
stride (2, 2)

1× 1 average pool,
stride (1, 1)

1× 1× 1 average pool,
stride (1, 1, 1)

Dense block (2)

[
1× 1conv
3× 3conv

]
× 12

[
1× 1conv
3× 3conv

]
× 6

[
1× 1× 1conv
3× 3× 3conv

]
× 6

Transition layer (2) 1× 1 conv 1× 1 conv 1× 1× 1 conv
2× 2 average pool,
stride (2, 2)

1× 1 average pool,
stride (1, 1)

1× 1× 1 average pool,
stride (1, 1, 1)

Dense block (3)

[
1× 1conv
3× 3conv

]
× 36

[
1× 1conv
3× 3conv

]
× 6

[
1× 1× 1conv
3× 3× 3conv

]
× 6

Transition layer (3) 1× 1 conv 1× 1 conv 1× 1× 1 conv
2× 2 average pool,
stride (2, 2)

2× 2 average pool,
stride (2, 2)

2× 2× 2 average pool,
stride (2, 2, 2)

Dense block (4)

[
1× 1conv
3× 3conv

]
× 24

[
1× 1conv
3× 3conv

]
× 4

[
1× 1× 1conv
3× 3× 3conv

]
× 4

Classification layer 7× 7 global average pooling 3× 3 CAM_conv, stride
(1, 1)

3× 3× 3 CAM_conv,
stride (1, 1, 1)

6× 7 global average
pooling

6× 7× 10 global
average pooling

3 fully connected,
softmax

3 fully connected,
softmax

3 fully connected,
softmax

700 ms of the arm movement time point with 100
bins. The spectral information was included from 10
to 120 Hz divided into 28 bins. To select the spatial
information, the bad electrode was removed, inter-
polated, and rescaled based on the brain region where
the electrode was located. In that way, we selected 40
spatial information from 64 electrode arrays. Thus,
the input data dimension was (100 × 28 × 40) (100
temporal bins × 28 spectral bins × 40 spatial bins).
We stacked the preprocessed data for every trial for
four months (M23: 4426 trials, M24: 5029 trials) and
randomly mixed the data to train the machine learn-
ing models (Total data size: 9455× 100× 28× 40).

2.4. Deep learning analysis
The deep learning structure was modified from
DenseNet [23], a convolutional neural network. The
DenseNet structure includes a dense connectivity pat-
tern that directly connects all layers to maximize the
flow of information between layers in the model.
This pattern, called Dense block, is characterized such
that data delivered to the current layer concatenates
all the data feature information from the previous
layers. This pattern has several advantages. First, if
the transmitted information is concatenated in the
current layer, features of previous layers are used
as is, so the information can flow to the next layer
without being disturbed. The features of the previ-
ous layers can thus be reused. Second, because the
layers are directly connected, the vanishing gradient

problem can be improved, and it can minimize over-
fitting. Also, the pattern offers easy trainingwith a few
parameters [23].

To design a 3D DNN model to classify 3D ECoG
data related to arm movement and use all the fea-
ture information, we added one dimension to the
deep learning channel and resolved all temporal,
spectral, and spatial information domains. Thus,
the input data dimension for the 3D DNN was
(9455 × 100 × 28 × 40 × 1). All 2D layers in the
DenseNet-161 structure were changed into 3D lay-
ers (table 1). The parameters (such as stride) of some
specific layers were adjusted according to the input
data size. In addition, a convolution layer was cre-
ated before the global average pooling layer for the
3D CAM analysis. For comparison, a 2DDNNmodel
was also built using 2D layers instead of 3D layers. To
verify and emphasize the performance, we compared
our 3D DNN with other machine learning meth-
ods: a linear discriminant analysis (LDA), support
vector machine (SVM), and 2D DNN. The classifier
was trained by five-fold cross-validation. For five-fold
cross-validation, the proportion of test data set was
20% of total data set so as not to overlap in each fold.
Then, the remaining data were divided into the train
data set and validation data by 8:2. The model train-
ing and analysis were conducted using the Tensor-
Flow and Keras libraries in a Python environment.
For training, an Nvidia Tesla P100 GPU 16 GB hard-
ware device was used.
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Figure 2. Schematic representation of the 3D class activation map using a 3D deep learning model. (A) Process of building the
3D CAM using a 3D deep learning model. We first trained a 3D convolutional neural network (using the DenseNet structure
[23]) until we had excellent performance using preprocessed 3D ECoG data. (B) Using the trained model, which described in (A),
we classified each arm movement from ECoG single-trial data. (Here shows the left arm trial example). After this arm movement
type prediction, we extracted the last 3D convolution layer’s activations and the last layer’s weights from the model, then
multiplied both to obtain the 3D CAM. The box content is the detailed process completed to get the 3D CAM. We multiplied the
last 3D convolution activation map and the weights of the last layer when predicting input data. Then, it enlarged the volume
(6× 7× 10) to the input image size (100× 28× 40). We obtained each 3D CAM corresponding to the max predictive class,
which was equal to the true class. (C) To analyze highly effective feature maps when the model classified left arm movement, we
calculated and stacked 3D CAMs of ECoG data for all trials. Then, the 3D CAM data were averaged by the trials and normalized.
In the case of right arm movement and both-arm movement, the averaged trial and normalized 3D CAMs were obtained in the
same way (figure S1 (available online at stacks.iop.org/JNE/18/066022/mmedia)). (D) To intuitively visualize 3D information, we
converted the 3D CAM into a topological projected figure called CAM Topomap. The CAM Topomap was obtained by mapping
the spectral information corresponding to specific temporal information in the electrode arrays.

2.5. Three-dimensional class activationmap
A CAM is a heat map image that shows the most
effective features when the designedDNNmodel clas-
sifies new input image data into a specific class [6]. A
CAM can be obtained as the product of both the last
convolutional layer before the global average pool-
ing layer and the weight of the last layer among the
components constituting the deep learning model
[6], as shown in figures 2(B) and (C). We applied
3D CAM to view the 3D class activation feature for
a 3D input data set. The process for obtaining the
3D CAM is the same as that for the 2D conventional
CAM, but the calculation is performed by adding
one more dimension. Figure 2(B) shows the process
for obtaining the 3D CAM. If new input data were
classified through the well-trained model, this model

calculated the probability that those data would be
sorted into each class. Then, the last 3D convolution
layer (6 × 7 × 10 × 976) and the weight of the last
layer (976 × 3) were extracted from the model and
multiplied by two values to obtain 3D CAM. The 3D
input image’s characteristics abstracted by the con-
volution layers were stacked in the last 3D convolu-
tion layer. The weight of the last layer was the trained
weight of the fully connected layer to classify the
data in the last 3D convolution layer. The multiplic-
ation of those layers used matrix multiplication. The
shape corresponding to the last 3D convolution layer’s
spatial-spectral-temporal information was changed
to enable matrix multiplication (420 × 976). After
performing the matrix multiplication (420 × 3), the
result was transformed back into the same shape as
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the last 3D convolution layer (6 × 7 × 10 × 3). This
3D image was then resized to fit the input image size
(100 × 28 × 40 × 3). The resized image showed the
location of the features that highly influenced the clas-
sification of the input image in the form of a 3D heat
map. To validate 3D CAM performance and to check
these visualized features are actually matching the
main feature of the input dataset, we conducted the
performance test using the 2D image of the CIFAR-10
dataset [24], as shown in figure S4. Through this eval-
uation, we can generalize that 3D CAM can explain
the input data’s key features and it helps how humans
can understand the machine works, which is related
to the difference of the classes.

In this study, we obtained a 3D CAM for all
trials in the left, right, and both-arm movement
classes. Then, we stacked the 3D CAMs for all tri-
als by each arm movement. After that, the 3D CAM
data for each class were normalized and visualized.
In that way, we tried to figure out which features
were the most important in classification. We conver-
ted the 3D CAM into a class activation topomap for
intuitive visualization, as shown in figure 2(E). The
CAM Topomap was obtained by mapping the spec-
tral information corresponding to specific temporal
information in the 3D CAM to the 8 × 4 electrode
array of each hemisphere, making it easy to under-
stand how the spectral information from each region
changed over time.

Visualization was performed using the graph-
ical user interface design environment in MATLAB
(Mathworks, USA). To confirm the 3D CAMdata, the
images were visualized in the spectrotemporal, spati-
otemporal, and spatiospectral dimensions. Visualiza-
tion, according to the spectral range, was performed
to check the CAMTopomap for each armmovement.

3. Results

3.1. Decoding the accuracy of the 3DDNN
To evaluate the 3D convolutional neural network’s
performance, we trained a variety of machine
learning models: LDA, SVM, DenseNet-2D, and
DenseNet-3D. Table 1 shows the DenseNet struc-
tures applied in this paper (DenseNet-2D and
DenseNet-3D). Those structures were modified to
train the 2D and 3D ECoG feature maps based
on DenseNet-161 [23]. We added one dimension
to DenseNet-3D in the convolutional filter layer
and the pooling layer. Furthermore, we conducted
hyper-parameter tuning, such as strides. As shown in
figure 3(A), the average classification accuracy of the
DenseNet-3Dwas almost 90%, higher than that of the
other models. In addition, the accuracy of individual
classifications as unimanual or bimanual movements
was higher than that of the other models. The res-
ults of the confusion matrix could be interpreted to

indicate that the 3D DNN model has a maximum
arm movement classification error of 2% or less,
compared with the other models (figure 3(C)). The
confusionmatrix result for the 2DDNNmodel indic-
ates that the arm movement classification error was
between 2.5% and 4.6%, but its performance was
worse than that of the 3D DNNmodel.

3.2. Analysis of the most effective classification
feature in the 3D decoder
First of all, to evaluate the 3D CAM performance,
we performed the simulation using the Densenet-
3D structure based on the CIFAR-10 dataset [24].
CAM performance quantification was performed
using the intersection over minimum (IoM) index
among intersection over union [6] and IoM [25],
which are commonly used in the field of object detec-
tion. As a result, the average accuracy was 86% (five-
fold cross validation) was obtained in image classi-
fication. In addition, the average IoM in figure S6
was 0.8933. Through these simulation processes, we
found that CAM can explain the input data’s differ-
ence by class (Please refer to figure S4 for details).

We used the 3D CAM to analyze the major clas-
sification features in the 3D DNN when the well-
trained model classified each arm movement. The
3D CAM configured the three dimensions (spatial-
spectral-temporal information) such as 3DECoG fea-
turemaps. To compare the 3D CAMpattern with that
of frequency power activation, we conducted a spec-
trum power analysis using the ESRP and topomap
reconstruction according to the arm movement task,
as depicted in figures 4(A) and (B) for trial averaged
results and figures S2 and S3 for example single trial
results. All the ERSPs from electrodes in specific brain
regions (M1, S1, PPC, PMd, and SMA) were aver-
aged (figure 4(A)). For the spatial distribution ana-
lysis in the topomap, the temporal information was
categorized into ‘before movement’ (−300 to 0 ms),
‘just after movement onset’ (0–100 ms), and ‘during
movement’ (100–700 ms). In the before-movement
state, the monkey was pressing and holding the green
glowing ready button with both arms while waiting
for the cue signal. In the movement onset state, the
monkey started their arm movement to press the tar-
get button that was lit red or blue.

Figure 4(A) depicts the spectrotemporal ERSP for
a representative electrode in five brain regions of the
left and right hemispheres. In the left arm movement
task, gamma band activation was noticed in the con-
tralateral regions (right hemisphere) and vice versa
during the right arm movement task, as we expec-
ted. In addition, the gamma band power increased
in both hemispheres during the bimanual task. In
the ERSP topomap, the mid gamma band was visu-
alized as the frequency band for each time range
(figure 4(B)) because the main activation features for
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Figure 3. Performance comparison of the machine learning models. (A) Performance graph showing the classification accuracy of
the 4 classifiers. The gray bar indicates the mean accuracy for each arm movement classification. (B) Receiver operating
characteristic curve comparing the 2D DNN and 3D DNN. (C) Confusion matrixes showing the classification accuracy of the
4 classifiers.

armmovement classification as shown in figures 4(A)
and (C) were distributed in the mid gamma band
range (50–90 Hz). As shown in figure 4(B), the ERSP
Topomap confirmed, in the case of one-hand move-
ment, that the gammaband power in the contralateral
brain hemisphere region increased in the ‘just after
movement onset’ (0–100ms) and ‘during movement’
times. Both hemispheres were involved in bimanual
movement.

In contrast to the frequency power activation,
the CAM analysis indicates that the features used
for classification showed different patterns accord-
ing to the movement tasks, as shown in figure 4(C).
In the case of left arm movement, the CAM model
highly weighted the gamma band of the left M1, S1,
and PPC for classification. For the right arm move-
ment class, the most weighted area was right M1, S1,
and PPC, which are also ipsilateral areas, as same as
described in the left-arm movement class weight res-
ult. In the both-arm movement task, the model used
a broad band, including the gamma and beta bands of

the right S1 and PPC at the specific temporal points
related to movement onset and offset.

4. Discussion

In this study, we designed a DNN classifier using
3D information from a neural signal, figured out
which information was used for the classification,
and used biological knowledge to explain why those
features were chosen. The 3D CAM allowed us to
confirm which information—electrodes, frequency
bands, and time points—made the most effective
classification features for ECoG data collected during
the arm movement tasks. As far as we know, we are
the first case to extract features through a 3D CAM
using spatial-spectral-temporal information from a
neural signal rather than using its own signal or just
an image. In terms of XAI, our work is a good preced-
ent because we have shown that neurophysiology data
can be interpreted by comparing it with the biological
background.
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Figure 4. 3D CAM and CAM Topomap. (A) Spectrotemporal ERSP from the 3D ERSP. (B) ERSP Topomap. These maps were
averaged by the middle gamma frequency range from 50 Hz to 90 Hz for three temporal states (before movement state, just after
movement onset state, and during movement state). (C) CAM for each electrode from the 3D CAM. (D) CAM Topomap.

4.1. The advantages of 3D CAM
As depicted in figure 3, our 3D DNN model showed
the best armmovement classification performance of
the tested methods, including a 2D DNN model. In
general, as more information is used during the clas-
sification, the results become more accurate. To use
all information, we converted arm-movement ECoG
data into spatial-spectral-temporal 3D data and we
applied it to a 3D DNN model rather than a typical
2D DNN model. That allowed us to train our model
using all data features withminimal information loss,
and thus our model showed better performance than
the 2DDNNmodel trained with the spectrotemporal
data typically used in the neuroscience field.

We used the 3D CAM to identify which spatial-
spectral-temporal features were highly weighted in
the classification of a well-trained 3D DNN model.
We found that the model we trained classified arm
movements by usingM1 and PPC for spatial features,
the gamma band (mainly mid-gamma-band) for
spectral information, and the movement onset and
during motion windows for temporal information

showing the consistence with previous study results
[22, 26–43].

4.2. The importance of 3D CAM ipsilateral
information in classifying armmovements
One interesting thing in our results is the strong
weight given to the ipsilateral region when classi-
fying a hand movement. Figure 5 shows that the
ECoG signal’s gamma-band power was activated in
the contralateral motor cortex region during unim-
anual movement. However, in the 3D CAM weight,
as confirmed through the CAM Topomap, the activ-
ation weight increased in the ipsilateral motor and
somatosensory cortex regions. A left arm movement
produced large weight distributions in the left hemi-
sphere S1 and PPC, and a right arm movement pro-
duced large weight distributions in the right hemi-
sphere M1 and S1. Thus, we interpret the 3D DNN
model deemed ipsilateral information to be import-
ant for arm movement classification when classifying
one-hand movement.
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Figure 5. Comparison of ERSP and CAM in an example electrode. (A) ECoG spectral power topomap and CAM Topomap for
each arm movement 400 ms after movement onset. At this temporal point, the 3D CAM weight was maximum. The ECoG
spectral power and 3D CAM weight were averaged in the middle gamma range: 50–90 Hz. In the case of a unimanual movement,
the ECoG spectral power represented a contralateral distribution. However, the CAM weight emphasized the ipsilateral
distribution (left arm movement: left S1; right arm movement: right M1). In the case of bimanual movement, the ECoG spectral
power represented a bilateral distribution, but the CAM weight emphasized the right hemisphere, especially the right S1 and PPC.
The red arrow indicates the electrode area with the maximum CAM weight for each arm movement. The spectrotemporal CAM
corresponds to the arrow color (blue: left arm movement, red: right arm movement; purple: both-arm movement) on the CAM
Topomap for each arm movement. About 0 ms is movement onset. These maps are jet scale. When the 3D deep learning machine
classified a one-arm movement, the machine used the gamma frequency range during movement (−100 ms to 500 ms). But for
two-arm movements, the model used a broad frequency range at two dominant time points (−100 ms and 400 ms). (B) Results in
the CAM Topomap and CAM around the maximum weight. There are bar graphs of the relationship between the 3D CAM
weight and ERSP power below the CAM Topo map. The gray bar represents the ERSP power, and the pink bar represents the
CAM weight, which is the average weight of the area corresponding to 90% of the maximum value in the spectrotemporal CAM
in figure (A). The white arrows and dashed boxes indicated the averaged area. The ERSP power was calculated by taking the
average value of the same area as the 3D CAM weight.

The general understanding of the central nervous
system for motor control is that most neurons that
originate in the motor cortex cross to the other side
during their descent in the brainstem. Therefore,
intersected neural activity controls the contralateral
region. According to the principle of the cortical con-
trol of movement, previous researchers mainly inter-
preted brain signals from the contralateral hemi-
sphere when subjects performed an arm-movement
task [26–29]. However, non-crossed neurons still

remain; the motor tract is not entirely contralat-
eral, so both ipsilateral and contralateral neurons
should be considered. Previously, several studies have
demonstrated the involvement of both ipsilateral and
contralateral cortex in themovement [30–32, 41–43].
According to a couple of previous studies, some M1
neurons show ipsilateral and bimanual-related activ-
ity [33], and some parietal neurons represent ipsilat-
eral armmovements [44]. In the neuroimaging study,
when the subjects moved the ipsilateral finger, the
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ipsilateral sensory and motor cortex of the finger was
modulated which significantly related to the pattern
induced by the contralateral finger [41]. Recently, two
studies showed why ipsilaterally-related activity does
not cause contralateral motor output, whileM1 activ-
ity has been correlated with both contralateral and
ipsilateral limb movements [42, 43]. They explained
that activity related to each arm occupies a distinct
subspace, enablingmuscle-activity decoders to natur-
ally ignore signals related to the other arm [42, 43].
From a machine learning point of view, Bundy found
that ipsilateral arm movement kinematics could be
decoded by ipsilateral signals [32], and Mooshagian
found that a linear SVM classifier trained on the
neural activity of parietal neurons could decode ipsi-
lateral arm movements [45]. These results suggest
that brain signals acquired in the motor cortex con-
tain information about both contralateral and ipsilat-
eral movement.

Unlike the one-handed exercise, the two-handed
movement allows interacting both hemispheres of the
brain to move the two hands together concurrently,
so the brain regions involved are different from those
used in one-handed motions [22]. Many studies have
reported that the posterior parietal cortex plays a role
in regulating the movement of both hands [45–49].
Some representative studies of bimanual coordina-
tion in primates analyzed the electrical activity of
PPC nerves during bimanual movement. Kermadi
et al (2000) electrically measured the neural activ-
ity of individual neurons in the PPC and showed
that more neurons were activated when performing
two-hand movements [46]. Mooshagian et al (2018)
measured neural signals in the parietal reach region
(PRR) of the PPC during ten different movement
patterns using one and both hands. They suggested
that the neural activity occurring in the PRR dur-
ing bimanual movements was not a linear sum of
that from one-handed movements but a pattern spe-
cific to two-handed movements that played a role
in bimanual coordination [45]. Some other clinical
research showed that subjects who were damaged in
that area were limited in moving both hands dur-
ing the bimanual movement task. Those results sug-
gested that the PPC makes an important contribu-
tion to two-handed adjustments. In figure 5, the
CAM Topomap for two-handed movement, unlike
the one-handed CAM Topomap, shows the max-
imum weight distribution in the right hemisphere S1
and PPC, which contain the PRR. In other words,
the ECoG power of the PRR was a significant feature
in the two-hand motion classification, which is con-
sistent with what E. Mooshagian described. We also
verified that bimanual coordination could be con-
firmed in the PPC using ECoG, which has charac-
teristics different from those in the neural spike sig-
nal. Therefore, our 3D DNN model’s features are
consistent with previously published neuroscience
knowledge.

4.3. The most important timing and frequency
bands when classifying armmovements
As we would normally expect from a physiological
analysis, the most important indicator in the time
domain was during the task period. These results
can be explained by Pfurtscheller and da Silva 1999
and Neuper and Pfurtscheller 2010 [34, 50]. They
showed that event-related power during the start,
middle, and end times of the exercise is a key func-
tion of brain-machine interface. In our research, we
found that the 3D CAM weight was maximized dur-
ing movement, especially 400 ms after the movement
onset, and we also confirmed the weight of unim-
anual movement expressed in the ipsilateral distri-
bution during movement (time range: −100 ms to
500 ms, figure 4). As shown in figure 5, 3D CAM
weights for the left and right arm movements, which
were averaged in the frequency range of 50 Hz–
90 Hz at 400ms, showed amainly ipsilateral distribu-
tion. Thus, temporal information provides import-
ant insights for classifying hand movements during
movement execution. However, for both-arm move-
ments, the weights on movement onset and offset
were higher, which we assume is related to somato-
sensory feedback.

In the spectrotemporal CAM of one-hand move-
ment, the well-trained 3D decoder used the gamma
frequency range during movement. On the other
hand, the decoder used a broad frequency range with
a focus on two main points, before (≓−100 ms) and
after movement (≓400 ms), in the spectrotemporal
CAM of two-hand movement. We interpret that to
indicate that the decoder determined that unimanual
or bimanual movement–related signal features in the
gamma frequency band were important throughout
the movement.

In previous reports, gamma bands played an
important role in the planning and execution of
hand or finger movements [35, 36, 51]. In partic-
ular, an increase in the amplitude of γ oscillations
during movement execution, a process described as
movement-related γ synchronization, made a great
contribution to the classification of arm movements
[34, 37–40].

When both arms move, both hemispheres com-
municate the movement information through the
corpus callosum [45, 47, 52]. Seltzer and Pandya
et al reported that arm movement information was
shared through the posterior corpus callosum [52].
Eliassen et al asked patients with corpus callosum
resection to draw symmetric or asymmetric figures.
Before resection surgery, the patients drew good sym-
metrical figures but were not good at asymmetrical
figures. After surgery, the patient whose posterior
corpus callosum was resected showed a significant
decline in the ability to make symmetrical drawings
using both hands [47]. These results were interpreted
to indicate that each hemisphere shares information
about two-handed coordination through the corpus
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callosum, especially the posterior corpus callosum.
Unlike the gamma frequency caused by local activity
in the cortex, the process of transmitting information
while interchanging signals between cortex regions or
hemispheres occur in a relatively low-frequency band,
so we interpreted our results to indicate that the 3D
DNN model used both gamma and low-frequency
features to classify both-hand movements.

4.4. Correlation between neural signals and the
machine’s weighting scheme
To confirm how the machine increased classification
weights, we checked the ERSP data corresponding to
the region accounting for about 90% of the CAM’s
largest weight value. The bar graphs in figure 5(B)
show the results in the left S1, right M1, and right
PPC. From the left S1 and right M1 areas, which were
the most prominent areas for each left and right uni-
manual movement class, results were contrary to our
expectations. The machine gave more weight at the
lowest ERSP power, not the highest ERSP power for
classification. On contrary, in the right PPC, where
the largest weight was placed in the bimanual move-
ment class, the relationship between the ERSP and
weight did not indicate that the machine used the
low ERSP power for classification, unlike the one-arm
movement results. However, in this case, because the
CAM weight of the bimanual movement used broad
frequency bands, as shown in figure 5(A), we had to
check the ERSP data and CAM weight of the cor-
responding frequency band to confirm that the res-
ults used the relatively low ERSP power for classi-
fication (figure S5(B)). Figure S5 illustrates a case in
which the CAM weight increased at a relatively high
ERSP power for arm movement classification, which
could infer that machine learning models can select
features using the general perspective that posits rel-
atively strong values as features of classification and
also selects relatively weak values as features of a clas-
sification. In that way, we confirmed that the model
classified the armmovement data not only by increas-
ing the weight for the relatively high ERSP power for
each class but also by increasing the weight for the
relatively low ERSP power as a characteristic of the
classification.

4.5. Limitations of CAM
CAM is a method of finding and showing the charac-
teristics that most emphasize the differences between
groups to be distinguished. Thus, the CAM result is
different depending on which group is to be classified
because the criteria for classification differ. In fact,
this is a feature that all machine learning techniques
related to classification have.

In this analysis, we analyzed the brain signal, and
basically, there are similar signals in each class (or
called noise). So, in CAM, there is a possibility to see
the difference between each class’s feature rather than

the exact corresponding feature of each class.We veri-
fied this issue in two ways: first with a simple cuboid
simulation to make this special situation, and then
tested with our brain signal data. (figures S6 and S7).
In this test, we could check the CAM result is dif-
ferent depending on the classifier even for the same
class. Thus, to interpret CAM from an XAI perspect-
ive, we should have a good understanding of the char-
acteristic of the input data and should be careful to
decide the number of classes or consider the correla-
tion between classes.

Another limitation of CAM, although this is also
a limitation of machine learning, is that the result
is depending on input data. In other words, the res-
ult of CAM changes depending on what the machine
receives as input. Using better input data not only can
distinguish a class well (better performance) but also
the feature will be expressed well in the CAM. Due
to the recent development of deep learning, even if
low-dimensional data is served, sometimes classified
through high-dimensional analysis. But the impact
that directly input high-level data is totally differ-
ent. In this study as well, it was not easy to analyze
the high-level correlations and coherences, which are
more complicated features than our simple inputs.
Also, these high-level features kind of coherence val-
ues were not used as major features for classifying.
Therefore, when determining input data, it is neces-
sary to considerwhether the characteristic is sufficient
to distinguish each class.

5. Conclusion

In this study, we measured the ECoG signals in two
monkeys and converted them into spatial-spectral-
temporal information that we used as input data for
a 3D DNN model. We found that specific temporal,
spectral, and spatial information played an important
role in classifying our data, thanks to our 3D activ-
ation information and 3D machine learning model.
Furthermore, the results of our system showed bet-
ter accuracy than other machine learning techniques
(2D DNN, LDA, and SVM). In the 3D CAM, the ipsi-
lateral region and mid gamma frequency range also
played an important role in classifying hand move-
ments.We expect that ourmethod can be widely used
in neuroscience electrophysiology research from the
point of view of XAI and can be improved the brain-
machine interface or machine learning performance.

Data availability statement

The data that support the findings of this study are
available upon reasonable request from the authors.

Acknowledgments

This research was supported by the Brain Research
Program through the National Research Foundation

11



J. Neural Eng. 18 (2021) 066022 H Choi et al

of Korea (NRF) funded by the Ministry of Sci-
ence and ICT (2016M3C7A1904987). This research
was supported by the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Sci-
ence and ICT (MSIT) (NRF-2019M3C7A1031278),
the Postdoctoral Fellowship Program of the NRF
(NRF-2021R1A6A3A14045108), the Technology
Innovation Program funded By the Ministry of
Trade, Industry & Energy (MOTIE) (Alchemist
Project, 20012461), and the Brain Convergence
Research Program of theNRF funded byMSIT (NRF-
2021M3E5D2A01021156).

ORCID iDs

Hoseok Choi https://orcid.org/0000-0001-5930-
3688
Seokbeen Lim https://orcid.org/0000-0002-4142-
3478

References

[1] Craik A, He Y T and Contreras-Vidal J L 2019 Deep learning
for electroencephalogram (EEG) classification tasks: a review
J. Neural. Eng. 16 031001

[2] LeCun Y, Bengio Y and Hinton G 2015 Deep learning Nature
521 436–44

[3] Adadi A and Berrada M 2018 Peeking inside the black-box: a
survey on explainable artificial intelligence (XAI) IEEE Access
6 52138–60

[4] Turek D M Explainable artificial intelligence (XAI) Defense
Advanced Research Projects Agency (DARPA) (available at:
www.darpa.mil/program/explainable-artificial-intelligence)
(Accessed 18 August 2020)

[5] Fellous J M, Sapiro G, Rossi A, Mayberg H and Ferrante M
2019 Explainable artificial intelligence for neuroscience:
behavioral neurostimulation Front. Neurosci. 13 1346

[6] Bolei Zhou A K, Lapedriza A, Oliva A and Torralba A 2016
Learning deep features for discriminative localization The
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR) pp 2921–9 (arXiv:1512.04150)

[7] Baehrens D, Schroeter T, Harmeling S, Kawanabe M,
Hansen K and Muller K R 2010 How to explain individual
classification decisions J. Mach. Learn. Res. 11 1803–31 <Go
to ISI>://WOS: 000282522400002

[8] Zeiler M D and Fergus R 2013 Visualizing and
understanding convolutional networks (arXiv)

[9] Sundararajan M, Taly, A and Yan Q 2017 Axiomatic
attribution for deep networks (arXiv)

[10] Yin Z and Zhang J H 2017 Cross-session classification of
mental workload levels using EEG and an adaptive deep
learning model Biomed. Signal Process. 33 30–47

[11] Mao Z, Huang Y and Hajinoroozi M 2015 Prediction of
driver’s drowsy and alert states from EEG signals with deep
learning 2015 IEEE 6th Int. Workshop on Computational
Advances in Multi-Sensor Adaptive Processing (CAMSAP)
pp 493–6

[12] Jiao Z C, Gao X B, Wang Y, Li J and Xu H J 2018 Deep
convolutional neural networks for mental load classification
based on EEG data Pattern Recogn. 76 582–95

[13] Tabar Y R and Halici U 2017 A novel deep learning approach
for classification of EEG motor imagery signals J. Neural.
Eng. 14 016003

[14] Wang Z J, Cao L, Zhang Z, Gong X L, Sun Y R andWang H R
2018 Short time Fourier transformation and deep neural
networks for motor imagery brain computer interface
recognition Concurr. Comp-Pract. E 30 e4413

[15] Liu M F, WuW, Gu Z H, Yu Z L, Qi F F and Li Y Q 2018
Deep learning based on Batch Normalization for P300 signal
detection Neurocomputing 275 288–97

[16] Cho J and Hwang H 2020 Spatio-temporal representation of
an electoencephalogram for emotion recognition using a
three-dimensional convolutional neural network Sensors
20 3491

[17] Ullah I, Hussain M, Qazi E U and Aboalsamh H 2018 An
automated system for epilepsy detection using EEG brain
signals based on deep learning approach Expert. Syst. Appl.
107 61–71

[18] Tsiouris K M, Pezoulas V C, Zervakis M, Konitsiotis S,
Koutsouris D D and Fotiadis D I 2018 A long short-term
memory deep learning network for the prediction of
epileptic seizures using EEG signals Comput. Biol. Med.
99 24–37

[19] Jonas S, Rossetti A O, Oddo M, Jenni S, Favaro P and
Zubler F 2019 EEG-based outcome prediction after cardiac
arrest with convolutional neural networks: performance and
visualization of discriminative features Hum. Brain Mapp.
40 4606–17

[20] Aslan Z and Akin M 2020 Automatic detection of
schizophrenia by applying deep learning over spectrogram
images of EEG signals Trait Signal 37 235–44

[21] Li Y, Yang H, Li J, Chen D and Du M 2020 EEG-based
intention recognition with deep recurrent-convolution
neural network: performance and channel selection by
Grad-CAM Neurocomputing 415 225–33

[22] Choi H, Lee J, Park J, Lee S, Ahn K-H, Kim I Y, Lee K-M and
Jang D P 2018 Improved prediction of bimanual movements
by a two-staged (effector- then-trajectory) decoder with
epidural ECoG in nonhuman primates J. Neural. Eng.
15 016011

[23] Gao Huang Z L, van der Maaten L and Weinberger K Q 2017
Densely connected convolutional networks The IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR)
pp 4700–8 (arXiv:1608.06993)

[24] Krizhevsky A 2009 Learning Multiple Layers of Features from
Tiny Images University of Toronto, 05 August 2009

[25] Zeng Z, Zhou Y, Jenkins O C and Desingh K 2018 Semantic
mapping with simultaneous object detection and
localization (arXiv)

[26] Chao Z C, Nagasaka Y and Fujii N 2010 Long-term
asynchronous decoding of arm motion using
electrocorticographic signals in monkeys Front. Neuroeng.
3 3

[27] Shimoda K, Nagasaka Y, Chao Z C and Fujii N 2012
Decoding continuous three-dimensional hand trajectories
from epidural electrocorticographic signals in Japanese
macaques J. Neural. Eng. 9 036015

[28] Chen C, Shin D, Watanabe H, Nakanishi Y, Kambara H,
Yoshimura N, Nambu A, Isa T, Nishimura Y and Koike Y
2013 Prediction of hand trajectory from
electrocorticography signals in primary motor cortex PLoS
One 8 e83534

[29] Farrokhi B and Erfanian A 2018 A piecewise probabilistic
regression model to decode hand movement trajectories
from epidural and subdural ECoG signals J. Neural. Eng.
15 036020

[30] Farrokhi B and Erfanian A 2020 A state-based probabilistic
method for decoding hand position during movement from
ECoG signals in non-human primate J. Neural. Eng.
17 026042

[31] Ganguly K, Secundo L, Ranade G, Orsborn A, Chang E F,
Dimitrov D F, Wallis J D, Barbaro N M, Knight R T and
Carmena J M 2009 Cortical representation of ipsilateral
arm movements in monkey and man J. Neurosci.
29 12948–56

[32] Bundy D T, Szrama N, Pahwa M and Leuthardt E C 2018
Unilateral, 3D arm movement kinematics are encoded in
ipsilateral human cortex J. Neurosci. 38 10042–56

[33] Donchin O, Gribova A, Steinberg O, Mitz A R, Bergman H
and Vaadia E 2002 Single-unit activity related to bimanual

12

https://orcid.org/0000-0001-5930-3688
https://orcid.org/0000-0001-5930-3688
https://orcid.org/0000-0001-5930-3688
https://orcid.org/0000-0002-4142-3478
https://orcid.org/0000-0002-4142-3478
https://orcid.org/0000-0002-4142-3478
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/Access.2018.2870052
https://doi.org/10.1109/Access.2018.2870052
https://www.darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.3389/fnins.2019.01346
https://doi.org/10.3389/fnins.2019.01346
https://arxiv.org/abs/1512.04150
https://doi.org/10.1016/j.bspc.2016.11.013
https://doi.org/10.1016/j.bspc.2016.11.013
https://doi.org/10.1016/j.patcog.2017.12.002
https://doi.org/10.1016/j.patcog.2017.12.002
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1088/1741-2560/14/1/016003
https://doi.org/10.1002/cpe.4413
https://doi.org/10.1002/cpe.4413
https://doi.org/10.1016/j.neucom.2017.08.039
https://doi.org/10.1016/j.neucom.2017.08.039
https://doi.org/10.3390/s20123491
https://doi.org/10.3390/s20123491
https://doi.org/10.1016/j.eswa.2018.04.021
https://doi.org/10.1016/j.eswa.2018.04.021
https://doi.org/10.1016/j.compbiomed.2018.05.019
https://doi.org/10.1016/j.compbiomed.2018.05.019
https://doi.org/10.1002/hbm.24724
https://doi.org/10.1002/hbm.24724
https://doi.org/10.18280/ts.370209
https://doi.org/10.18280/ts.370209
https://doi.org/10.1016/j.neucom.2020.07.072
https://doi.org/10.1016/j.neucom.2020.07.072
https://doi.org/10.1088/1741-2552/aa8a83
https://doi.org/10.1088/1741-2552/aa8a83
https://arxiv.org/abs/1608.06993
https://doi.org/10.3389/fneng.2010.00003
https://doi.org/10.3389/fneng.2010.00003
https://doi.org/10.1088/1741-2560/9/3/036015
https://doi.org/10.1088/1741-2560/9/3/036015
https://doi.org/10.1371/journal.pone.0083534
https://doi.org/10.1371/journal.pone.0083534
https://doi.org/10.1088/1741-2552/aab290
https://doi.org/10.1088/1741-2552/aab290
https://doi.org/10.1088/1741-2552/ab848b
https://doi.org/10.1088/1741-2552/ab848b
https://doi.org/10.1523/Jneurosci.2471-09.2009
https://doi.org/10.1523/Jneurosci.2471-09.2009
https://doi.org/10.1523/Jneurosci.0015-18.2018
https://doi.org/10.1523/Jneurosci.0015-18.2018


J. Neural Eng. 18 (2021) 066022 H Choi et al

arm movements in the primary and supplementary motor
cortices J. Neurophysiol. 88 3498–517

[34] Pfurtscheller G and Da Silva F H L 1999 Event-related
EEG/MEG synchronization and desynchronization: basic
principles Clin. Neurophysiol. 110 1842–57

[35] Pfurtscheller G, Graimann B, Huggins J E, Levine S P and
Schuh L A 2003 Spatiotemporal patterns of beta
desynchronization and gamma synchronization in
corticographic data during self-paced movement Clin.
Neurophysiol. 114 1226–36

[36] Muthukumaraswamy S D 2010 Functional properties of
human primary motor cortex gamma oscillations J.
Neurophysiol. 104 2873–85

[37] Pfurtscheller G and Andrew C 1999 Event-related changes of
band power and coherence: methodology and interpretation
J. Clin. Neurophysiol. 16 512–9

[38] Pfurtscheller G and Aranibar A 1979 Evaluation of
event-related desynchronization (Erd) preceding and
following voluntary self-paced movement Electroen Clin.
Neuro 46 138–46

[39] Han Yuan A D, Gururajan A and Bin H 2008 Cortical
imaging of event-related (de)synchronization during online
control of brain-computer interface using minimum-norm
estimates in frequency domain IEEE Trans. Neural. Syst.
Rehabil. Eng. 16 425–31

[40] Cheyne D, Bells S, Ferrari P, Gaetz W and Bostan A C 2008
Self-paced movements induce high-frequency gamma
oscillations in primary motor cortex Neuroimage 42 332–42

[41] Diedrichsen J, Wiestler T and Krakauer J W 2013 Two
distinct ipsilateral cortical representations for individuated
finger movements Cereb. Cortex 23 1362–77⩽Go to
ISI⩾://WOS:000318649100010

[42] Ames K C and Churchland MM 2019 Motor cortex signals
for each arm are mixed across hemispheres and neurons yet
partitioned within the population response Elife 8 1–36⩽Go
to ISI⩾://WOS: 000489621000001

[43] Heming E A, Cross K P, Takei T, Cook D J and Scott S H 2019
Independent representations of ipsilateral and contralateral

limbs in primary motor cortex Elife 8 1–26 ⩽Go to
ISI⩾://WOS: 000494356800001

[44] Chang S W C, Dickinson A R and Snyder L H 2008
Limb-specific representation for reaching in the posterior
parietal cortex J. Neurosci. 28 6128–40

[45] Mooshagian E, Wang C G, Holmes C D and Snyder L H 2018
Single units in the posterior parietal cortex encode patterns
of bimanual coordination Cereb. Cortex 28 1549–67

[46] Kermadi I, Liu Y and Rouiller E M 2000 Do bimanual motor
actions involve the dorsal premotor (PMd), cingulate (CMA)
and posterior parietal (PPC) cortices? Comparison with
primary and supplementary motor cortical areas Somatosens
Mot. Res. 17 255–71 <Go to ISI>://WOS:000088923800005

[47] Eliassen J C, Baynes K and Gazzaniga M S 1999 Direction
information coordinated via the posterior third of the
corpus callosum during bimanual movements Exp. Brain
Res. 128 573–7

[48] Halsband U, Schmitt J, Weyers M, Binkofski F, Grutzner G
and Freund H J 2001 Recognition and imitation of
pantomimed motor acts after unilateral parietal and
premotor lesions: a perspective on apraxia Neuropsychologia
39 200–16

[49] Serrien D J, Nirkko A C, Lovblad K O and Wiesendanger M
2001 Damage to the parietal lobe impairs bimanual
coordination Neuroreport 12 2721–4

[50] Neuper C and Pfurtscheller G 2010 Neurofeedback training
for BCI control Brain-Computer Interfaces: Revolutionizing
Human-Computer Interaction ed B Graimann,
G Pfurtscheller and B Allison (Berlin: Springer)
pp 65–78

[51] Crone N E et al 1998 Functional mapping of human
sensorimotor cortex with electrocorticographic spectral
analysis—I. Alpha and beta event-related desynchronization
Brain 121 2271–99

[52] Seltzer B and Pandya D N 1983 The distribution of posterior
parietal fibers in the corpus-callosum of the rhesus-monkey
Exp. Brain Res. 49 147–50 <Go to ISI>://WOS:A1983QA012
00016

13

https://doi.org/10.1152/jn.00335.2001
https://doi.org/10.1152/jn.00335.2001
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1016/S1388-2457(03)00067-1
https://doi.org/10.1016/S1388-2457(03)00067-1
https://doi.org/10.1152/jn.00607.2010
https://doi.org/10.1152/jn.00607.2010
https://doi.org/10.1097/00004691-199911000-00003
https://doi.org/10.1097/00004691-199911000-00003
https://doi.org/10.1016/0013-4694(79)90063-4
https://doi.org/10.1016/0013-4694(79)90063-4
https://doi.org/10.1109/TNSRE.2008.2003384
https://doi.org/10.1109/TNSRE.2008.2003384
https://doi.org/10.1016/j.neuroimage.2008.04.178
https://doi.org/10.1016/j.neuroimage.2008.04.178
https://doi.org/10.1093/cercor/bhs120
https://doi.org/10.1093/cercor/bhs120
https://doi.org/10.7554/eLife.46159
https://doi.org/10.7554/eLife.46159
https://doi.org/10.7554/eLife.48190
https://doi.org/10.7554/eLife.48190
https://doi.org/10.1523/Jneurosci.1442-08.2008
https://doi.org/10.1523/Jneurosci.1442-08.2008
https://doi.org/10.1093/cercor/bhx052
https://doi.org/10.1093/cercor/bhx052
https://doi.org/10.1080/08990220050117619
https://doi.org/10.1080/08990220050117619
https://doi.org/10.1007/s002210050884
https://doi.org/10.1007/s002210050884
https://doi.org/10.1016/S0028-3932(00)00088-9
https://doi.org/10.1016/S0028-3932(00)00088-9
https://doi.org/10.1097/00001756-200108280-00026
https://doi.org/10.1097/00001756-200108280-00026
https://doi.org/10.1007/978-3-642-02091-9_4
https://doi.org/10.1093/brain/121.12.2271
https://doi.org/10.1093/brain/121.12.2271
https://doi.org/10.1007/BF00235551
https://doi.org/10.1007/BF00235551

	Non–human primate epidural ECoG analysis using explainable deep learning technology
	1. Introduction
	2. Methods
	2.1. Subjects and surgical protocol
	2.2. Behavior task
	2.3. Data acquisition and preprocessing
	2.4. Deep learning analysis
	2.5. Three-dimensional class activation map

	3. Results
	3.1. Decoding the accuracy of the 3D DNN
	3.2. Analysis of the most effective classification feature in the 3D decoder

	4. Discussion
	4.1. The advantages of 3D CAM
	4.2. The importance of 3D CAM ipsilateral information in classifying arm movements
	4.3. The most important timing and frequency bands when classifying arm movements
	4.4. Correlation between neural signals and the machine's weighting scheme
	4.5. Limitations of CAM

	5. Conclusion
	Acknowledgments
	References


