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Introduction
Prostate cancer (PCa) is one of the most common causes 
of cancer-related death in males worldwide.1 The current 
standard tool in diagnosing PCa is transrectal ultrasound-
guided biopsy. However, it has limitations including a false-
negative rate (47%),2 the underestimation of the Gleason 
score (GS) in 34–46% of cases,3 and the overdiagnosis and 
overtreatment of indolent disease.4 Prostate multipara-
metric MRI (mpMRI) has increasingly been used for the 
detection and risk stratification of clinically significant 
cancer (CSC).

Recently, in 2015, the Prostate Imaging Reporting and 
Data System (PI-RADS) version 2 (v. 2) was introduced 
to standardize the image acquisition technique and inter-
pretation of prostate mpMRI.5 In PI-RADS v. 2 guidelines, 
diffusion-weighted imaging (DWI) and apparent diffusion 
coefficient (ADC) map are the dominant sequences in the 
peripheral zone of the prostate and it is recommended that 
a monoexponential model (MEM) to be used to obtain 
ADC measurements of the signal decay data at different b 
values (0, 50–100, and 800–1000 s/mm2).5 However, clear 
scientific evidence supporting this recommendation is still 
lacking.
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Objective: To evaluate the usefulness of histogram anal-
ysis of stretched exponential model (SEM) on diffusion-
weighted imaging in evaluating clinically significant 
prostate cancer (CSC).
Methods: A total of 85 patients with prostate cancer 
underwent 3 T multiparametric MRI, followed by radical 
prostatectomy. Histogram parameters of the tumor from 
the SEM [distributed diffusion coefficient (DDC) and α] 
and the monoexponential model [MEM; apparent diffu-
sion coefficient (ADC)] were evaluated. The associa-
tions between parameters and Gleason score or Prostate 
Imaging Reporting and Data System v. 2 were evaluated. 
The area under the receiver operating characteristics 
curve was calculated to evaluate diagnostic performance 
of parameters in predicting CSC.
Results: The values of histogram parameters of DDC and 
ADC were significantly lower in patients with CSC than in 

patients without CSC (p < 0.05), except for skewness and 
kurtosis. The value of the 25th percentile of α was signifi-
cantly lower in patients with CSC than in patients without 
CSC (p = 0.014). Histogram parameters of ADC and DDC 
had significant weak to moderate negative associations 
with Gleason score or Prostate Imaging Reporting and 
Data System v. 2 (p < 0.001), except for skewness and 
kurtosis. For predicting CSC, the area under the curves of 
mean ADC (0.856), 50th percentile DDC (0.852), and 25th 
percentile α (0.707) yielded the highest values compared 
to other histogram parameters from each group.
Conclusion: Histogram analysis of the SEM on diffusion-
weighted imaging may be a useful quantitative tool for 
evaluating CSC. However, the SEM did not outperform 
the MEM.
Advances in knowledge: Histogram parameters of SEM 
may be useful for evaluating CSC.
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With advances in MR hardware and software, the use of higher b 
values (>1000 s/mm2), advanced DWI acquisition and modeling 
methods have been possible.6 Non-Gaussian behavior of diffu-
sion reflects tissue heterogeneity and irregularity, which can be 
demonstrated using high b-value DWI and requires advanced 
DWI modeling.6–9 The stretched exponential model (SEM) 
can reflect the deviation of the curve from monoexponential 
behavior.10–12 The SEM DWI has been applied to malignant 
tumors, such as brain, kidney, cervix, and ovary tumors.13–17 Only 
a few studies have demonstrated that SEM DWI could be useful 
in assessing PCa aggressiveness and for detecting PCa.6,9,11,12 
However, few studies have reported the results following the 
evaluation of PCa using histogram analysis of SEM DWI.11 This 
method requires more validation in order to be adopted in the 
clinical practice. Therefore, the purpose of this study was to eval-
uate the value of histogram analysis of SEM DWI in evaluating 
CSC.

Methods and materials
Subjects
Our local institutional review board approved the study and 
waived the need for informed consent because of the retrospec-
tive study design. Between September 2015 and January 2016, 
106 patients with biopsy-proven PCa who underwent prostate 
mpMRI received radical prostatectomy. These patients fulfilled 
the following inclusion criteria: 1) pre-operative mpMRI 
including DWI at 3 T and 2) no prior radiation therapy, chemo-
therapy or hormonal therapy. Of these, 21 males were excluded: 
outside MRI (n = 17) and several DWI artifacts (n = 4). Finally, 
85 consecutive males (mean age, 67.1 years; range, 44‒81 years) 
were included in this study (Figure 1). The mean time interval 
between MRI examination and surgery was 51.7 days. The loca-
tions of cancers were as follows: peripheral zone (n = 56), transi-
tion zone (n = 24), and both (n = 5).

MRI protocols
MRI examinations were performed using a 3 T MRI scanner 
(Achieva TX, Philips Healthcare, Best, The Netherlands) 
equipped with a phased-array coil. The routine MRI protocols 
included T2 weighted, T1 weighted, DWI and dynamic contrast-
enhanced imaging according to the PI-RADS v. 2 guidelines.5

T2 weighted turbo spin echo images of axial, coronal and sagittal 
planes were obtained using the following imaging parame-
ters: repetition time (TR)/echo time (TE), 3800–4700/80‒100 
ms; slice thickness, 3 mm; interslice gap, 1 mm; matrix, 568 
× 341; field of view (FOV), 20 cm; number of signals acquired 
(NSA), 3; sensitivity encoding (SENSE) factor, 2; and number of 
slices, 21. Axial DWI was obtained using the single-shot echo 
planar imaging technique with the following parameters: TR/
TE, 4400–4800/63–75 ms; slice thickness, 3 mm; interslice gap, 
1 mm; matrix, 112 × 112–110; FOV, 20 cm; SENSE factor 2; NSA, 
4; number of slices, 20; and b–values, 0, 100, 1000 and 1500 s/
mm2. Axial dynamic contrast-enhancing imaging was obtained 
using a three-dimensional (3D)-fast field echo sequence [TR/TE, 
7.4/3.9 ms; flip angle, 5° and 15° (pre-contrast) and 25° (post-
contrast); matrix, 224 × 179; slice thickness, 4 mm; interslice gap, 
no; NSA, 1; FOV, 20 cm; and 11 partitions on a 3D slab]. The 3D 
volume with 11 partitions was acquired every 3 s with 60 repe-
titions. A post-contrast image was obtained immediately after a 
bolus injection of gadolinium-based contrast agents at a dose of 
0.1 mmol/kg body weight and a rate of 2–3 ml s−1 using a power 
injector and a 20 ml saline flush was followed.

Image and histologic analysis
All MR images were reviewed by an experienced genitourinary 
radiologist (C.K.K., with 13 years of experience in prostate MRI) 
who was blinded to the clinical results of each patient to mini-
mize the bias, but was aware of pathological findings.

Quantitative analyses of histogram parameters were performed 
using diffusion analysis software (EXPRESS; Philips Healthcare, 
Korea) based on MEM and SEM.10,18,19 For analysis of images 
acquired from high-b-value DWI, parametric maps were devel-
oped by fitting the following models to the pixel signal intensity 
(SI) at the different b values, as follows.

For the MEM DWI,

S/S0 = exp (-bADC), where S represents the SI at a particular 
b-value, S0 is the estimated SI at b = 0 s/mm2, and the ADC 
acquired from monoexponential fit.

For the SEM DWI,

S/S0 = exp (-bDDC)α, where S represents the SI at a particular 
b-value, and S0 is the SI for a b = 0 s/mm2 image. The distributed 
diffusion coefficient (DDC) is a measure of the rate of signal decay 
with various b values, representing mean intravoxel diffusion 
rates. The index α is the water molecular diffusion heterogeneity 
and related to intravoxel water diffusion heterogeneity (range, 
0–1). A higher α value indicates low intravoxel diffusion hetero-
geneity, which approaches pure monoexponential decay. The α 

Figure 1. Flow chart of patient enrollment. CSC,clinically sig-
nificant cancer; DWI, diffusion-weighted imaging.
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= 1 is equivalent to monoexponential diffusion-weighted signal 
decay (i.e. low intravoxel diffusion heterogeneity). Conversely, 
an α = 0 indicates a higher degree of multiexponential signal 
decay.14 The DDC is biexponential estimates of diffusion rates 
on the time allowed for diffusion and not directly reflect the fluid 
viscosity unless diffusion is unrestricted.

Regions of interest (ROIs) were manually drawn around the 
entire visible tumor on the ADC maps: each ROI in each ADC 
map of a tumor focus were summed to obtain voxel-by-voxel 
values for histogram analysis. However, it did not include edge 
voxels to avoid a partial volume effect. The ROIs on ADC maps 
were copied onto the corresponding areas on either the DDC 
or α map (Figure  2). In cases without visible tumors on ADC 
maps, the ROI measurements were performed in the areas 
where tumors were identified on the histopathological find-
ings. The histogram parameters of ADC, DDC and α values 
were minimum (ADCmin, DDCmin, and αmin), 25th percentile 
(ADC25, DDC25, and α25), 50th percentile (ADC50, DDC50, 
and α50), 75th percentile (ADC75, DDC75, and α75), maximum 
(ADCmax, DDCmax, and α max), mean (ADCmean, DDCmean, and 

αmean), skewness (ADCskewness, DDCskewness, and αskewness) and 
kurtosis (ADCkurtosis, DDCkurtosis, and αkurtosis). In addition, to 
evaluate interobserver reliability and variability of histogram 
parameters, a less-experienced radiologist (H.S.K., with 1 year 
of experience in prostate MRI) manually drew the ROIs in the 
tumors for 20 patients in the same manner as the first measure-
ment. The quantitative values were measured twice at the same 
site and the average was recorded.

More than 4 weeks after the end of quantitative analysis, qualita-
tive analysis was performed by a radiologist (C.K.K.) according 
to the PI-RADS v. 2 guidelines for assessing the likelihood of 
CSC.5 The PI-RADS score per patient for an index tumor using 
a 5-point scale was recorded. The index tumor was considered 
when a tumor was seen on mpMRI with the highest PI-RADS 
score. If the highest PI-RADS score assigned to the tumors 
were ≥2, one that shows extracapsular extension or is larger was 
considered as the index tumor. The greatest axial diameter of the 
index tumor was also recorded in accordance with the strategy 
for lesion measurement of the PI-RADS v. 2. Tumors with a GS 
≥3 + 4 were considered to be CSC.

Figure 2. 67-year-old male with a left peripheral zone cancer (arrow) with a PSA of 12.9 ng ml−1, size of 1.8 cm, and a GS of 4 + 3=7. 
(A-B, Axial T2-weighted image shows a heterogeneous hypointense lesion in the left peripheral zone (arrow), with focal extraca-
psular extension. On the diffusion-weighted image with b = 1500 s/mm2 (B), the tumor shows marked hyperintensity (arrow). The 
PI-RADS v. 2 score is 5. (C-E) Axial ADC (C), DDC (D) and α (E) maps including all histograms. The mean values of the ADC, DDC, 
and α in the tumor (region of interest) are 624.8 × 10−6 mm2/s, 897.9 × 10−6 mm2/s, and 0.731, respectively. ADC,apparent diffusion 
coefficient; DDC, distributed diffusion coefficient; PI-RADS,Prostate Imaging Reporting and Data System.
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The histopathological findings in a whole-mounted step section 
of the prostate were used as the standard reference. An experi-
enced pathologist who was blinded to the MRI findings reviewed 
all slides prepared from the tissue slices. Tumor size and volume, 
distribution, extracapsular extension, seminal vesicle invasion, 
lymph node metastasis, and GS were reported.

Statistical analysis
The patients were classified into two groups: the group with 
CSC and the group without CSC. Continuous parameters were 
compared using the Student t-test or Mann–Whitney test, and 
categorical data were compared using Fisher’s exact test or χ2 
test. As clinical parameters, age, prostate specific antigen (PSA), 
PSA density, prostate volume, and digital rectal examination 
(DRE) findings were included. Spearman rank correlation was 
used to evaluate the associations between parameters and GS or 
PI-RADS v. 2 scoring.

To evaluate diagnostic performance and identify optimal cut-
off values for the prediction of CSC, receiver operating charac-
teristics (ROC) curve analysis was used and the area under the 
curve (AUC), sensitivity, and specificity were also calculated. 
The Youden index was calculated to identify the optimal cut-off 

value of each parameter for the prediction of CSC. Of clinical or 
imaging parameters, parameters that showed significant associa-
tion with GS were evaluated at ROC curve analysis.

Interobserver reliability and variability were evaluated using an 
intraclass correlation coefficient (ICC) and an Altman–Bland 
plot, respectively. Reliability, assessed using the ICC value, was 
considered to be poor when the ICC value was between 0.00 
and 0.20, fair when the ICC value was between 0.21 and 0.40, 
moderate when the ICC value was between 0.41 and 0.60, good 
when the ICC value was between 0.61 and 0.80, and excellent 
when the ICC value was between 0.81 and 1.00. All statistical 
analysis was performed using SPSS software (v. 23.0, SPSS, 
Chicago, IL) and Medcalc (v. 13.0; MedCalc Software, Mariak-
erke, Belgium).Two-sided p values < 0.05 were considered statis-
tically significant.

Result
Clinical characteristics
The clinical characteristics are presented in Table  1. At histo-
pathological findings, CSC was found in 70 patients (82.4%), 
while clinically insignificant cancer was found in the remaining 

Table 1. Clinical characteristics

Parameter All (n = 85) CSC (-) (n = 15) CSC (+) (n = 70) p-value*
Age (year) 67.1 (44–81) 66.4 (57–78) 67.2 (44–81) 0.507

PSA (ng/ml) 10.7 (1.7–54.7) 6.2 (1.9–14.1) 11.7 (1.7–54.7) 0.034

Prostate volume (cm3) 35.9 (11–101) 41.2 (18–101) 34.8 (11–100) 0.493

PSA density (ng/ml/cm3) 0.33 (0.07–1.45) 0.17 (0.07–0.41) 0.37 (0.07–1.47) 0.007

Tumor size (mm) 16.6 (0–45) 9.5 (0–13.7) 18.1 (0–45) <0.001

DRE (+) 21 1 20 0.017

PI-RADS v. 2 <0.001

2 4 (4.7) 2 (13.3) 2 (2.9)

3 4 (4.7) 3 (20.0) 1 (1.4)

4 35 (41.2) 10 (66.7) 25 (35.7)

5 42 (49.4) 0 (0) 42 (60.0)

Surgical findings

 � Tumor volume (cm3) 5.15 (0.03–81.80) 0.45 (0.03–2.50) 6.15 (0.30–81.80) <0.001

 � Gleason score na

6 15 (17.6) 15 (100.0) 0

3 + 4 35 (41.2) 0 35 (50.0)

4 + 3 18 (21.2) 0 18 (25.7)

8 8 (9.4) 0 8 (11.4)

9 9 (10.6) 0 9 (12.9)

 � Extracapsular extension (+) 34 0 34 <0.001

 � Seminal vesicle invasion (+) 8 0 8 0.340

CSC, clinically significant cancer; DRE, digital rectal examination; PI-RADS, Prostate Imaging Reporting and Data System; PSA, prostate specific 
antigen.
Data are presented as mean (range) or n (%).
aStatistical differences between the two groups.
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15 patients (17.6%). The values of the PSA, PSA density, tumor 
size on MRI, and tumor volume were significantly higher in the 
group with CSC than in the group without CSC (all-p <0.05). The 
group with CSC had a significantly higher PI-RADS v 2 score 
than the group without CSC (p < 0.001). The group with CSC 
had significantly higher proportion of palpable nodule on digital 
rectal examination or extracapsular extension as compared with 
the group without CSC (p = 0.007 and p < 0.001, respectively). No 
significant differences were found between the groups regarding 
age, prostate volume, and seminal vesical invasion (all-p >0.05).

Histogram parameters of monoexponential and 
stretched exponential DWI
Table  2 presents the results for histogram parameters of the 
MEM and SEM between the groups with and without CSC. In 
the MEM, all ADC parameters for the group with CSC were 
significantly lower than those for the group without CSC (all-
p <0.001), except for skewness (p = 0.190) and kurtosis (p = 
0.291). In the SEM, all DDC parameters for the group with CSC 
were significantly lower in the group with CSC than those for 
the group without CSC (all-p <0.001), except for skewness (p = 

Table 2. Histogram parameters of the monoexponential and stretched-exponential DWI models

Parameter All (n = 85) CSC (-) (n = 15) CSC (+) (n = 70) p-valuea

ADC histogram (×10−6 mm2/s)

 � ADCmean 795 ± 271 1100 ± 416 729 ± 171 <0.001

 � ADCmin 633 ± 234 880 ± 344 580 ± 163 <0.001

 � ADC25 686 ± 240 941 ± 361 631 ± 164 <0.001

 � ADC50 798 ± 319 1088 ± 426 719 ± 173 <0.001

 � ADC75 912 ± 302 1258 ± 470 838 ± 187 <0.001

 � ADCmax 1008 ± 314 1337 ± 471 937 ± 215 <0.001

 � ADCskewness 0.37 ± 0.73 0.14 ± 0.75 0.41 ± 0.72 0.19

 � ADCkurtosis 3.22 ± 1.74 2.79 ± 0.82 3.31 ± 1.87 0.291

DDC histogram (×10−6 mm2/s)

 � DDCmean 819 ± 323 1188 ± 449 740 ± 224 <0.001

 � DDCmin 604 ± 277 900 ± 391 541 ± 199 <0.001

 � DDC25 658 ± 285 982 ± 408 588 ± 195 <0.001

 � DDC50 798 ± 319 1158 ± 450 721 ± 221 <0.001

 � DDC75 970 ± 397 1404 ± 514 876 ± 298 <0.001

 � DDCmax 1287 ± 1623 1538 ± 552 1233 ± 1768 0.041

 � DDCskewness 254 ± 220 0.15 ± 0.72 309 ± 2420 0.624

 � DDCkurtosis 4.89 ± 9.75 2.90 ± 0.86 5.31 ± 10.71 0.388

 � DDCmean 819 ± 323 1188 ± .449 740 ± 224 <0.001

α histogram

 � αmean 0.760 ± 0.074 0.788 ± 0.092 0.754 ± 0.069 0.1

 � αmin 0.656 ± 0.670 0.626 ± 0.126 0.663 ± 0.737 0.848

 � α25 0.629 ± 0.087 0.678 ± 0.111 0.618 ± 0.077 0.014

 � α50 0.747 ± 0.083 0.775 ± 0.092 0.741 ± 0.078 0.152

 � α75 0.901 ± 0.077 0.904 ± 0.077 0.900 ± 0.078 0.858

 � αmax 0.968 ± 0.056 0.957 ± 0.065 0.970 ± 0.054 0.416

 � αskewness
 � (×10−3)

4.32 ± 38.49 0.19 ± 0.61 5.29 ± 42.41 0.644

 � αkurtosis
 � (×10−3)

2.58 ± 0.93 2.66 ± 0.81 2.56 ± 0.96 0.714

ADC, apparent diffusion coefficient; CSC, clinically significant cancer; DDC, distributed diffusion coefficient..
Data are presented as mean ± standard deviation.
aStatistical differences between the two groups.
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0.624) and kurtosis (p = 0.388). Among the α histogram param-
eters, only α50 was significantly different between the groups (p 
= 0.014).

Associations between parameters and GS or PI-
RADS v. 2
The associations between histogram parameters and GS or 
PI-RADS v. 2 are presented in Table  3. Regarding associations 
with the GS, all ADC parameters, except for skewness and 
kurtosis, had significantly moderate negative associations (ρ = 
−0.411 to −0.470) (all-p <0.001). With the exception of skewness 
and kurtosis, all DDC parameters showed significantly nega-
tively either moderate (DDCmean, DDCmin, DDC25, DDC50 and 
DDC75; ρ = −0.428 to −0.466) or weak (DDCmax; ρ = −0.376) 
associations (all-p <0.001). Among the α parameters, only αmin 
and α25 showed significantly negative weak associations (ρ = 
−0.289, p = 0.007; ρ = −0.217, p = 0.041).

Regarding associations with PI-RADS v. 2, all ADC and DDC 
parameters showed significantly weak to moderate negative asso-
ciations (ρ = −0.388 to −0.428; ρ = −0.308 to −0.419; all-p <0.01), 
except for skewness and kurtosis. Among the α parameters, only 
αmin and α25 showed significantly weak negative association (ρ 
= −0.259, p = 0.017; ρ = −0.231, p = 0.047).

Of clinical parameters, tumor size (ρ = 0.419, p < 0.001) and 
PI-RADS v. 2 (ρ = 0.504, p < 0.001) showed significantly 
moderate positive associations with the GS. The PSA density (ρ = 
0.296, p = 0.006) and PSA (ρ = 0.231, p = 0.033) had significantly 
weak associations with the GS. However, age, DRE and prostate 
volume had no significant association with the GS (all-p >0.05).

ROC curve analysis
Table 4 presents the diagnostic performance and optimal cutoff 
for the prediction of CSC. The AUCs of all parameters for the 
DDC (0.785–0.852) were similar to those of the corresponding 
parameters for the ADC (0.811–0.856) (all-p <0.05). The AUCs 
of α25 and αmin were 0.707 and 0.703, respectively. Among the 
clinical parameters, PI-RADS v. 2 had the highest AUC (0.843) 
followed by tumor size (AUC = 0.817).

For the prediction of CSC, the AUCs of ADCmean (0.856), 
DDC50 (0.852), and α25 (0.707) that showed the highest values 
compared to other histogram parameters of each group were 
not significant different with that of PI-RADS v 2 in pairwise 
comparisons: PI-RADS v. 2 vs ADCmean, p = 0.821; PI-RADS v 2 
vs DDC50, p = 0.874; PI-RADS v 2 vs α25, p = 0.149).

Interobserver reliability and variability
Interobserver reliability of all ADC and DDC parameters were 
excellent (ICC = 0.893‒0.953 for ADC; ICC = 0.874‒0.937 for 
DDC), except for ADCskewness (ICC = 0.620), ADCkurtosis (ICC 
= 0.245), DDCskewness (ICC = 0.002), and DDCkurtosis (ICC = 
0.504). Interobserver reliability of α parameters was good to 
excellent (ICC = 0.6172‒0.824), with the exception of those 
for αskewness (ICC = 0.146) and αkurtosis (ICC = −0.405). For 
the interobserver variability in the Altman–Bland plots, the 
mean differences of ADC parameters ranged from 0.4 to 11.3%, Ta
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except that for skewness (230.4%). The mean differences of DDC 
parameters ranged from 0.9 to 12.6%, except that for skewness 
(53.8%). The mean differences of α parameters ranged from 0.1 
to 10.7%, except that for skewness (76.1%).

Discussion
The mpMRI is the best imaging tool for detecting and staging 
PCa and DWI is an essential sequence of mpMRI.5 To date, many 
studies have investigated deviations in the diffusion signal from 
monoexponential behavior using high b-value DWI.8,9,11,12,19 
Complex parametric models considered from high b-value 
DWI include the bi-exponential model, diffusion kurtosis 
imaging and SEM. The SEM was first introduced by Bennett et 
al10 to evaluate diffusion and intravoxel heterogeneity, as repre-
sented by the parameters of DDC and α. Several recent studies 
have demonstrated the potential of the SEM for detecting PCa 
or tumor aggressiveness.6,9,11,12 However, other studies have 
reported that MEM DWI alone may be sufficient in evaluating 
PCa in clinical practice.8,20 Accordingly, further studies remain 
to be investigated for clinical usefulness of the SEM as compared 
with the MEM.

Risk stratification is very crucial for patient counseling and for 
the selection of optimal treatment strategies because PCa has 
heterogeneous behaviors.21 In this study, we found that the values 
of DDC parameters from SEM DWI were significantly lower 
in the group with CSC than in the group without CSC. In the 
ROC curve analysis, these DDC parameters had good diagnostic 
performance for predicting CSC (AUC = 0.785‒0.852). However, 
these results of the DDC parameters were not significantly 
different from those of the ADC parameters. These findings 
suggest that the SEM did not outperform the MEM in evaluating 
CSC. Thus, we believe that the MEM alone may be sufficient in 
clinical practice. Further studies on this subject are needed.

The histogram analysis has several advantages. It provides statis-
tical information and offers a quantitative methodology for 
analyzing nonsignificant changes in the pixels of tumors.22 The 
percentiles may be useful in evaluating malignant components 
of lesions through the identification of different microenviron-
ments that may be masked by mean ADC values. In addition, 
changes in the shape of the histogram and the degree of asym-
metry indicated by kurtosis and skewness can reflect changes 

Table 4. Diagnostic performance of imaging and clinical parameters for the prediction of CSC

Parameter AUC Cutoff Sensitivity (%) Specificity (%) p-value
ADC histogram
(×10−6 mm2/s)

 � ADCmean 0.856 ≤797 68.6 93.3 <0.001

 � ADCmin 0.819 ≤827 94.3 60 <0.001

 � ADC25 0.830 ≤848 94.3 60 <0.001

 � ADC50 0.853 ≤803 72.9 86.7 <0.001

 � ADC75 0.851 ≤994 78.6 86.7 <0.001

 � ADCmax 0.811 ≤1086 75.7 86.7 <0.001

DDC histogram
(×10−6 mm2/s)

 � DDCmean 0.849 ≤840 71.4 93.3 <0.001

 � DDCmin 0.824 ≤838 94.3 60 <0.001

 � DDC25 0.842 ≤640 62.9 93.3 <0.001

 � DDC50 0.852 ≤830 72.9 86.7 <0.001

 � DDC75 0.836 ≤1049 74.3 86.7 <0.001

 � DDCmax 0.785 ≤1150 68.6 86.7 <0.001

α histogram

 � αmin 0.703 ≤0.590 67.1 73.3 0.0183

 � α25 0.707 ≤0.637 61.4 80 0.0210

Clinical

 � PSA 0.675 >5.47 72.9 66.7 0.0236

 � DRE 0.643 palpable 28.6 100 <0.001

 � Tumor size 0.817 >13.7 64.3 100 <0.001

 � PI-RADS v. 2 0.843 5 60 100 <0.001

 � PSA density 0.723 >0.158 71.4 73.3 0.0011

ADC, apparent diffusion coefficient; DDC, distributed diffusion coefficient; DRE, digital rectal examination; PI-RADS, Prostate Imaging Reporting 
and Data System; PSA, prostate-specific antigen.
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in microstructures. To date, only a recent study by Liu et al11 
has reported the potential usefulness of histogram analysis of 
DDC and ADC parameters in differentiating low GS from high 
GS cancers. Consistent with the previous study,11 our results 
demonstrated that histogram parameters of DDC and ADC were 
significantly different between groups with and without CSC.

The Gleason grading system has consistently demonstrated a 
prognostic value in PCa patients.23 The ADC from MEM is 
a known marker for assessing PCa aggressiveness.24,25 In the 
present study, ADC and DDC parameters showed significantly 
negative associations with the GS, which is consistent with the 
findings of a previous study.11 Of these ADC or DDC parame-
ters, ADCmean and DDC50 showed the highest associations with 
GS (ρ = −0.470 and −0.466, respectively).

The mpMRI including T2 weighted imaging, DWI and dynamic 
contrast-enhanced imaging is associated with tumor GS.26 
Several studies have reported that the PI-RADS v. 2 could provide 
excellent diagnostic accuracy for CSC detection, with 82‒89% 
sensitivity and 72‒73% specificity.27,28 Although PI-RADS v. 
2 does not provide quantitative information, it reflects tumor 
aggressiveness because a higher score in the prostate indicates 
hypointensity on ADC map with markedly hyperintense on DWI. 
In the present study, DDC parameters showed weak to moderate 
associations with the PI-RADS v. 2 scores and the values of DDC 
parameters were equivalent to those of ADC parameters. These 
results were consistent with those of previous studies.29

The α value is used to describe the deviation of water diffu-
sion.10,12 A few studies reported that α values are not associated 
with the GS in PCa.6,11 However, our study demonstrated that 
αmin and α25 value have weak negative associations with the 
GS or PI-RADS v. 2. Moreover, the AUCs of αmin and α25 were 
0.703 and 0.707 for predicting CSC, respectively. These findings 
suggest that the α value might have somewhat potential for eval-
uating tumor heterogeneity or assessing tumor aggressiveness. 
However, these findings seem to be insufficient to be used in 
clinical practice. Additionally, PCa aggressiveness may be depen-
dent on tissue architecture including the luminal, epithelial, and 
stromal components and changes in PCa aggressiveness may 
be dependent on the size of the PCa and not only on the tumor 
heterogeneity.30

The skewness and kurtosis may be strong and quantitative predic-
tors of tumor heterogeneity.31 However, our results showed that 
the skewness and kurtosis from MEM and SEM are not asso-
ciated with the GS or PI-RADS v. 2 and are not significantly 
different between groups with and without CSC. Our results are 
consistent with those of a previous study11 that demonstrated no 
significant correlation with GS. These findings may be explained 
that GS in PCa is based on tissue microscopic features including 
epithelial, luminal and stromal components, and its change is 
based on their relative sizes rather than only tumor heteroge-
neity.30 Thus, further investigations are needed.

In the ROC curve analysis of our study, the ADCmean and 
DDC50 had the highest AUC for predicting CSC compared 

to other histogram parameters for each group. Although SEM 
DWI can offer useful information for diffusion and intravoxel 
heterogeneity, parameters from SEM DWI did not outperform 
of ADCmean from MEM DWI to predict CSC. Contrary to our 
results, a recent study reported that the 10th percentile of the 
ADC and DDC had the highest AUC for differentiating between 
low and high GS cancers compared to other histogram parame-
ters for each group.11 Further studies to determine which DDC 
and ADC histogram parameter is the best for predicting CSC are 
needed. Interestingly, the ADCmin, DDC50, and α25 that had the 
highest AUC for predicting CSC compared to other histogram 
parameters for each group had similar AUC with PI-RADS v. 2 
at ROC curve analysis. These findings may support the recent 
updated PI-RADS v. 2.1 that does not include quantitative infor-
mation on MR sequences.32 However, a further larger study is 
warranted.

The reliability and variability of quantitative MRI parame-
ters are essential when these parameters are being considered 
as potential imaging biomarkers. Our results demonstrated 
that interobserver agreement for ADC and DDC parameters, 
except for skewness and kurtosis, were excellent. This finding 
is consistent with that of a previous study.19 The interobserver 
agreement of α parameters, except for skewness and kurtosis, 
was good to excellent. Interobserver variabilities in all MEM 
and SEM parameters, except for skewness, were less than 12.6%. 
Thus, SEM histogram parameters could be used as imaging 
markers similar to MEM ADC parameters, except for skewness 
or kurtosis. For poor interobserver agreement and variability 
for skewness or kurtosis, one potential explanation may be that 
it is too dependent on microvariation in the ROI placements. 
However, to increase the use of these parameters in clinical 
practice, sophisticated software or standardized ROI measure-
ments for tumors will be needed to improve reliability between 
observers.

Several limitations are worth noting in our study. First, our study 
was a retrospective study that all included patients received 
radical prostatectomy in a single institution, indicating a selec-
tion bias. Thus, our results may not be translated into other 
scenarios such as active surveillance or prebiopsy MRI cohorts 
with elevated PSA. Second, quantitative ROI measurements 
might contain inevitable errors due to potential radiological-
pathological mismatching. Finally, multiexponential diffusion 
attenuation could be more significant when the b-value is high 
(≥3000 mm2/s). However, the highest b-value in our study was 
1500 mm2/s due to limited signal-to-ratio. A further study is 
needed.

In conclusion, our results demonstrate that histogram analysis of 
the SEM on DWI may be a useful quantitative tool for evaluating 
CSC. However, the SEM did not outperform the MEM.
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